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ABSTRACT

Filter lists are widely deployed by adblockers to block ads and other
forms of undesirable content in web browsers. However, these filter
lists are manually curated based on informal crowdsourced feed-
back, which brings with it a significant number of maintenance
challenges. To address these challenges, we propose a machine
learning approach for automatic and effective adblocking called
AdGraph. Our approach relies on information obtained from mul-
tiple layers of the web stack (HTML, HTTP, and JavaScript) to train
a machine learning classifier to block ads and trackers. Our evalua-
tion on Alexa top-10K websites shows that AdGraph automatically
and effectively blocks ads and trackers with 97.7% accuracy. Our
manual analysis shows that AdGraph has better recall than filter
lists, it blocks 16%more ads and trackers with 65% accuracy. We also
show that AdGraph is fairly robust against adversarial obfuscation
by publishers and advertisers that bypass filter lists.

1 INTRODUCTION

Background. Adblocking deployment has been steadily increas-
ing over the last several years. According to PageFair, adblockers
are used on more than 600 million devices globally as of December
2016 [15, 24, 26]. There are several reasons that have led to many
users installing adblockers like Adblock Plus and uBlock Origin.
First, many websites show flashy and intrusive ads that degrade
user experience [25, 27]. Second, online advertising has been repeat-
edly abused by hackers to serve malware (so-called malvertising)
[44, 48, 54] and more recently cryptojacking, where attackers hijack
computers to mine cryptocurrencies [37]. Third, online behavioral
advertising has incentivized a nefarious ecosystem of online track-
ers and data brokers that infringes on user privacy [28, 36]. Most
adblockers not only block ads, but also block associated malware
and trackers. Thus, in addition to instantly improving user expe-
rience, adblocking is a valuable security and privacy enhancing
technology that protects users against these threats.
Motivation. Perhaps unsurprisingly, online publishers and ad-
vertisers have started to retaliate against adblockers. First, many
publishers deploy anti-adblockers, which detect adblockers and
force users to disable their adblockers. This arms race between ad-
blockers and anti-adblockers has been extensively studied [45, 46].
Researchers have proposed approaches to detect anti-adblocking
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scripts [40, 49, 60], which can then be blocked by adblockers. Second,
some advertisers have started to manipulate the delivery of their
ads to bypass filer lists used by adblockers. For example, Facebook
recently obfuscated signatures of ad elements that were used by
filter lists to block ads. Adblockers, in response, quickly identified
new signatures to block Facebook ads. This prompted a few back
and forth actions, with Facebook changing their website to remove
ad signatures, and adblockers responding with new signatures [52].
Limitations of Filter Lists. While adblockers are able to block
Facebook ads (for now), Facebook’s whack-a-mole strategy points
to two fundamental limitations of adblockers. First, adblockers use
manually curated filter lists to block ads and trackers based on
informally crowdsourced feedback from the adblocking community.
This manual process of filter list maintenance is inherently slow
and error-prone. When new websites are created, or existing web-
sites make changes, it takes adblocking community some time to
catch up by updating the filter lists [1]. This is similar to other areas
of system security, such as updating anti-virus signatures [31, 42].
Second, rules defined in these filter lists are fairly simple HTTP and
HTML signatures that are easy to defeat for financially motivated
publishers and advertisers. Researchers have shown that random-
ization techniques, where publishers constantly mutate their web
content (e.g., URLs, element ID, style class name), can easily defeat
signatures used by adblockers [51]. Thus, publishers can easily, and
continuously, engage in the back and forth with adblockers and
bypass their filtering rules. It would be prohibitively challenging
for the adblocking community to keep up in such an adversarial
environment at scale. In fact, a few third-party ad “unblocking”
services claim to serve unblockable ads using the aforementioned
obfuscation techniques [14, 32, 58].
Proposed Approach. In this paper, we aim to address these chal-
lenges by developing an automatic and effective adblocking ap-
proach. We propose AdGraph, which alleviates the need for man-
ual filter list curation by using machine learning to automatically
identify effective (both accurate and robust) patterns in the page
load process to block ads and trackers. Our key idea is to construct
a multi-layer graph representation that incorporates fine-grained
HTTP, HTML, and JavaScript information during page load. Com-
bining information across the different layers of the web stack
allows us to capture tell-tale signs of ads and trackers. We extract
a variety of structural (degree and connectivity) and content (do-
main and keyword) features from the constructed graph to train a
supervised machine learning model to detect ads and trackers.
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Technical Challenges. In order to achieve automatic and effective
adblocking, AdGraph needs to handle two main technical chal-
lenges. First, we need to capture fine-grained interactions between
DOM elements for tracing the relationships between ads/trackers
and the rest of the page content. Specifically, we need to record
changes to the DOM, especially in relation to JavaScript code load-
ing and execution. To this end, we use an instrumented version of
Chromium web browser to extract HTML, HTTP, and JavaScript
information during page load in an efficient manner [43]. Second,
we need a reliable ground truth for ads and trackers to train an
accurate machine learning model. As discussed earlier, the adblock-
ing community relies on filter lists, which are manually curated
based on informal crowdsourced feedback. While the collective
amount of work put in by volunteers for maintaining these filter
lists is impressive [9, 20], filter lists routinely suffer from errors,
which include both false negatives: missed ads and false positives:
site breakage [1]. To this end, we extract a variety of structural and
content features to train a supervised machine learning classifica-
tion algorithm called Random Forest, which enables us to avoid
over-fitting on noisy ground truth [59].
Contributions. We summarize our key contributions as follows.
(1) We leverage information across multiple layers of the web

stack—HTML, HTTP, and JavaScript—to build a fine-grained
graph representation. We then extract a variety of structural
and content features from this graph representation so that we
can use off-the-shelf supervised machine learning algorithms
to automatically and effectively block ads and trackers.

(2) We employ AdGraph on Alexa top-10K websites. We show
that AdGraph successfully replicates the behavior of existing
crowdsourced filter lists. We evaluate the contribution of dif-
ferent feature sets that capture HTTP, HTML, and JavaScript
information. We show that jointly using these feature sets helps
in achieving 97.7% accuracy, 83.0% precision, and 81.9% recall.
The accuracy of AdGraph also compares favorably to prior
machine learning based approaches [30], which reported an
accuracy between 57.5% and 81.8%.

(3) Our manual analysis reveals that more than 65% of AdGraph’s
reported false positives are in fact false negatives in the crowd-
sourced filter lists. We further show that about 74% of the
remaining false positives are harmless in that they do not cause
any visible site breakage.

(4) We evaluate the effectiveness of AdGraph in a variety of ad-
versarial scenarios. Specifically, we test AdGraph against an
adversary who can obfuscate HTTP URLs (domains and query
strings) and HTML elements (ID and class based CSS selec-
tors) [51]. While crowdsourced filter lists are completely by-
passed by such adversarial obfuscation, we show thatAdGraph
is fairly robust against obfuscation attempts—AdGraph’s pre-
cision and recall decrease by at most 7% and 19% for the most
aggressive obfuscation, respectively.

Paper organization. The rest of the paper is organized as follows.
Section 2 provides some background on adblockers while highlight-
ing some of the key challenges. Section 3 describes our approach to
graph construction and featurization, in detail. Section 4 presents
experimental evaluation. Section 5 summarizes related work before
we conclude in Section 6.

2 BACKGROUND

Adblocking browsers (e.g. Brave) and adblocking extensions (e.g.
AdBlock Plus and uBlock Origin) use crowdsourced filter lists to
block ads and trackers. Examples of popular crowdsourced filter
lists include EasyList [6] to block ads, EasyPrivacy [10] to block
trackers, and Anti-Adblock Killer [3] to block anti-adblockers. Filter
lists contain HTTP and HTML signatures to block ads and trackers.
The crowdsourced, signature-based filter list approach to block ads
and trackers has significant benefits. Crowdsourced filter lists are
updated by volunteers at an impressive pace [9, 20] to cover new
ads and trackers as they are encountered and reported by users
[1, 7]. Further, the signatures used by these lists are relatively easy
for contributors to understand, broadening the number of possible
contributors. However, this crowdsourced, signature-based filter
list approach entails significant, and possibly intractable, downsides
that suggest the need for new adblocking approaches going forward.
The remainder of this section details some of the weaknesses in the
current filter list approach, while the following section describes
our proposed solution.
Bloat. A growing problem with crowdsourced, signature-based fil-
ter lists is that they bloat over time, becomingmore difficult to main-
tain. This is partially a result of the non-expert, non-methodical way
of adding signatures to the list. Rules are added far more frequently
than rules are removed, resulting in a long tail of stale, low-utility
rules. During a crawl of the Alexa top-1K websites, where we vis-
ited the home page and three randomly selected child pages, we
observed that only 884 of the 32,218 (less than 3%) HTTP rules in
EasyList trigger. Additionally, because these increasingly bloated
filter lists are manually maintained, they are slow to catch up when
websites introduce changes. Iqbal et al. [40] reported that filter
lists sometimes take several months to add rules for blocking new
anti-adblockers.
Accuracy. Crowdsourced filter lists also suffer in terms of accuracy
(both precision and recall). Precision suffers from overly broad rules.
This is evidenced by the ever-growing number of exception rules
in these filter lists, which are added to undo incorrectly blocked
resources from other overly broad rules. As one notable example,
263 exception rules in EasyList exist only to allow resources blocked
by other rules for a single domain. EasyList contains many such
examples of exception rules catering for other overly broad rules.
Recall suffers mainly due to the lack of sufficient feedback for less
popular websites. Englehardt and Narayanan [36] reported that
filter lists are less effective at blocking obscure trackers.
Evasion. Crowdsourced filter lists can be easily evaded by pub-
lishers and advertisers. Simple randomization of HTTP and HTML
information can successfully evade filter lists used by adblockers
[51]. Some publishers have already begun using these techniques.
For example, Facebook recently manipulated HTML element identi-
fiers that were being used by EasyList to get their ads past adblock-
ers [33, 47, 52]. Domain generation algorithm (DGA) is another
technique that allows publishers and advertisers to evade filter
lists [35, 58]. Third-party services such as Instart Logic provide ad
“unblocking” services [14] that leverage similar HTTP and HTML
obfuscation techniques to evade filter lists.
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Figure 1: Our proposed approach for classification of AD and NON-AD URLs. We combine information from HTML, HTTP,

and JavaScript layers and represent connections among and across these layers in form of a graph. We then extract features

from the graph and train a machine learning model to classify AD and NON-AD URLs.

In summary, filter lists used by adblockers are inefficient, un-
reliable, and susceptible to obfuscation by financially motivated
adversaries. We believe that adblocking is a valuable security and
privacy-enhancing technology that needs to move beyond crowd-
sourced filter lists to stay viable as the arms race between advertisers
and adblockers continues to escalate.

3 PROPOSED APPROACH: ADGRAPH

After providing an overview of AdGraph’s architecture, we discuss
the construction of multi-layer graph representation that incorpo-
rates fine-grained HTTP, HTML, and JavaScript information during
page load. We then discuss AdGraph’s featurization approach to
train a machine learning model for detecting ads and trackers.

3.1 Overview

Figure 1 shows an architectural overview of AdGraph—a graph-
based machine learning approach for detecting ads and trackers
on a given web page. AdGraph uses an instrumented version of
Chromium web browser to extract HTML, HTTP, and JavaScript
information during page load. The HTML, HTTP, and JavaScript
layers of the web stack are processed and converted into a graph
structure. This graph structure captures both relationships within
the same layer (e.g. parent-child HTML elements) and across layers
(e.g. which JavaScript code units created which HTML elements)
of the web stack. We compute a variety of structural (degree and
connectivity) and content (domain and keyword) features, and use
these features to classify nodes as either AD or NON-AD using a
supervised machine learning model.

3.2 HTML, HTTP, and JavaScript Layers

We use an instrumented version of Chromium web browser to build
a graph of the relationships between HTML, HTTP, and JavaScript
actions related to a web page [43].

HTML. For HTML layer extraction, we inject and execute a script
in the website and traverse the complete DOM tree to extract all
HTML elements. We start from the root of the DOM tree and tra-
verse it in the breadth-first order. At each level of the DOM tree, we
record outerHTML (the serialized HTML fragment, which includes
its complete contents) and baseURI (to link elements to where they
are loaded from) attributes of all HTML elements.
JavaScript. For JavaScript layer extraction, we leverage the logs ob-
tained from the instrumented version of Chromium. Specifically, the
instrumented Chromium browser records all interactions between
JavaScript snippets and HTML elements. The instrumentation ex-
tends Chromium’s DevTools to log the addition of new HTML
elements, modification to existing HTML elements, and event listen-
ers attached to HTML elements via JavaScript. From these logs, we
extract JavaScript snippets, URLs that load the JavaScript snippets,
and interactions between JavaScript snippets and HTML elements.
HTTP. For HTTP layer extraction, we rely on information already
obtained during extraction of HTML and JavaScript layers. More
specifically, we use baseURI attribute extracted from the HTML
layer and HTTP URLs extracted from the JavaScript layer to con-
struct HTTP layer. We further enrich the HTTP layer by adding
HTTP URLs from href and src tags of HTML elements.

3.3 Graph Construction

We next combine information from HTML, HTTP, and JavaScript
layers. To this end, we represent information from different layers
in the form of a graph structure. As we elaborate below, each HTML
element, HTTPURL, and JavaScript snippet is represented as a node,
and relationships among these nodes are represented as edges. By
way of illustration, Figure 2 visualizes the graph for a toy example
in Code 1.

3.3.1 Graph Nodes. We categorize nodes in the graph according
to their layer information. We have three types of nodes: HTML

3



1 <html>
2 <head>
3 <script src="thirdparty.com/script1.js" type="text/

javascript"></script>
4 <script src="thirdparty1.com/script2.js" type="text/

javascript"></script>
5 <script type="text/javascript">
6 var iframe=document.createElement('iframe ');
7 var html='<img src="adnetwork.com/ads.gif">';
8 iframe.src= 'adnetwork.com ';
9 document.body.appendChild(iframe);
10 </script>
11 <link rel="stylesheet" href="../ style1.css">
12 </head>
13
14 <body>
15 <div class = "class1" id = "id1">
16 <img id="image1" src="example.com/img.gif" height=

"10" width="10">
17 ...
18 </div>
19 <div class = "class1" id = "id2">
20 <iframe id = "iframe1" src = "adnetwork.com">
21 ...
22 </iframe>
23 ...
24 <div class = "class2" id = "id3">
25 <button type="button" onclick="func()"></button>
26 ...
27 <ul>
28 <li>List item. </li>
29 ...
30 </ul>
31 </div>
32 </div>
33 ...
34 </body>
35 </html>

Code 1: A sample HTML page.

element, HTTP URL, and JavaScript snippet. For the example graph
in Figure 2, HTML nodes are represented by , HTTP nodes are
represented by , and JavaScript nodes are represented by . We
further categorize HTML, HTTP, and JavaScript nodes to capture
more fine-grained information about them.
HTML element nodes. HTML element nodes are further cate-
gorized as HTML iframe element, HTML image element, HTML
style element, and HTML miscellaneous element based on their
tag name information. HTML iframe element nodes are HTML
element nodes with iframe tag name. HTML image element nodes
are HTML element nodes with img tag name. HTML style element
nodes are HTML element nodes with style tag name. HTML mis-
cellaneous element nodes are HTML element nodes with tag name
other than iframe, img, or style.
HTTP URL nodes. HTTP URL nodes are further categorized
according to their edges with HTML element nodes and JavaScript
snippet nodes. We categorize HTTP URL nodes into HTTP script
URL, HTTP source URL, HTTP iframe URL, and HTTP element
URL nodes. HTTP script URL nodes are HTTP URL nodes that
load JavaScript snippets. HTTP source URL nodes are HTTP URL
nodes that load all categories of HTML elements other than iframe
HTML elements. HTTP iframe URL nodes are HTTP URL nodes
that load iframe HTML elements. HTTP element URL nodes are
HTTP URL nodes that are present as src of HTML elements.
JavaScript snippet nodes. JavaScript snippet nodes are further
categorized according to their scope: inline or referenced. JavaScript
inline snippet nodes are JavaScript snippet nodes that are present

HTML Nodes
HTTP Nodes
JavaScript  Nodes

12

3

7

11

12

8

10

13

6

4

5

9
HTTP URL nodes to HTML element nodes

HTML element nodes to HTTP element URL 
nodes
HTML element nodes to HTTP script URL and 
JavaScript inline snippet nodes

HTML element nodes to HTML element nodes
JavaScript snippet nodes to HTML element nodes

HTTP script URL nodes to JavaScript reference 
snippet nodes

HTML element nodes to HTTP iframe URL nodes

Figure 2: The three-layered graph for Listing 1. The graph

shows HTML, HTTP, and JavaScript layers, along with

edges, both within and across these layers.

as inline scripts in the DOM. JavaScript reference snippet nodes are
JavaScript snippet nodes that are loaded as reference in the DOM.

3.3.2 Graph Edges. We represent relationships among nodes
within each layer and across different layers as edges. We categorize
edges based on the relationships between pairs of nodes into seven
broad categories, which further have subcategories. Figure 2 shows
the categories of edges in the example graph using different colors.
Edges from HTTP URL nodes to HTML element nodes.
Edges fromHTTP URL nodes to HTML element nodes represent the
loading of an HTML element from an HTTP URL. These edges cap-
ture information about the origin of HTML elements. These edges
are further categorized into edges from HTTP iframe URL nodes
to HTML iframe element nodes and edges from HTTP source URL
nodes to all other categories of HTML element nodes. These edges
are represented by in Figure 2, which has two such edges: one
from node 1 to node 2 and the other from node 9 to node 10. The
edge from node 1 to node 2 represents the initial page load and the
edge from node 9 to node 10 represents the loading of an iframe.
Node 2 is the base HTML element and it corresponds to the line
1 of Code 1. Node 10 is an HTML iframe element node with id
iframe1 and it corresponds to the line 20 of Code 1.
Edges from HTTP script URL nodes to JavaScript reference

snippet nodes. Edges from HTTP script URL nodes to JavaScript
reference snippet nodes represent the loading of a JavaScript snippet
from an HTTP URL. These edges capture information about the
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origin of JavaScript snippets. These edges are represented by
in Figure 2. The edge from node 5 to node 7 in Figure 2 represents
the loading of a third-party script. Node 5 is an HTTP script URL
node and node 7 is a JavaScript reference snippet node. Both node
5 and node 7 correspond to the script item on line 3 of Code 1.
Edges from HTML element nodes to HTTP element URL

nodes. Edges from HTML element nodes to HTTP element URL
nodes represent an HTML element that has an HTTP URL as its
source. These edges capture information about the content loaded
inside an HTML element. These edges are further categorized into
edges from HTML image element nodes to HTTP element URL
nodes, edges from HTML style element nodes to HTTP element
URL nodes, and edges from HTML miscellaneous element nodes to
HTTP element URL nodes. These edges are represented by in
Figure 2. The edge from node 12 to node 13 in Figure 2 represents
the loading of an image. Node 12 is an HTML image element node
and node 13 is an HTTP element URL node. Both node 12 and node
13 correspond to the img item with id image1 on line 16 of Code 1.
HTML element nodes to HTTP script URL and JavaScript in-

line snippet nodes. Edges from HTML element nodes to HTTP
script URL and JavaScript inline snippet nodes capture the occur-
rence of JavaScript snippets in the the DOM tree. These edges are
represented by in Figure 2. We have two such edges in Figure 2:
one from node 4 to node 5 and the other from node 4 to node 6. The
edge from node 4 to node 5 represents the occurrence of a script
with third-party reference and the edge from node 4 to node 6
represents the occurrence of an inline script. Nod 4 is an HTML
element node and it corresponds to the head HTML item on line 2
of Code 1. Node 5 is an HTTP script URL node and it corresponds
to the script item on line 3 of Code 1. Node 6 is a JavaScript inline
snippet node and it corresponds to the inline script item on line 5
of Code 1.
HTML element nodes to HTTP iframe URL nodes. Edges
from HTML element nodes to HTTP iframe URL nodes repre-
sent the loading of an HTML iframe element from an HTTP URL.
These edges capture information about the origin of HTML iframe
elements and are represented by in Figure 2. The edge from
node 9 to node 10 in Figure 2 represents the loading of an iframe.
Node 9 is an HTML element node and it corresponds to the div
HTML item with id id2 on line 19 of Code 1. Node 10 is an HTTP
iframe URL node and it corresponds to the iframe item with id
iframe1 on line 20 of Code 1.
Edges from HTML element nodes to HTML element nodes.
Edges from HTML element nodes to HTML element nodes capture
the hierarchy of HTML elements in the DOM tree. These edges cap-
ture the parent-child relationship among parent HTML elements
and child HTML elements. These edges are represented by
in Figure 2. A majority of edges in Figure 2 are edges from HTML
element nodes to HTML element nodes. One such edge from node 3
to node 8 in Figure 2 represents the parent-child relationship be-
tween two HTML elements. Node 3 is an HTML element node and
it corresponds to the body HTML item on line 14 of Code 1. Node 8
is an HTML element node and it corresponds to the div HTML
item with id id2 on line 19 of Code 1.

Edges from JavaScript source snippet nodes to HTML ele-

ment nodes. Edges from JavaScript source snippets nodes to
HTML element nodes represent the interaction between a script
and anHTML element. Theses edges capture addition of newHTML
elements, modification to existing HTML elements, and event lis-
teners attached to HTML elements. There can be multiple edges
from one JavaScript source snippet node to an HTML element node.
These edges are represented by in Figure 2. The edge from
node 6 to node 11 in Figure 2 represents the addition of an HTML
iframe element with further sub HTML image element. Node 6 is
a JavaScript inline snippet node and it corresponds to the inline
script item on line 5 of Code 1. Node 11 is an HTML iframe el-
ement node with id iframe1 and it corresponds to the line 20 of
Code 1.

3.4 Feature Extraction

After constructing the graph, we are set to extract features from it
to train a machine learning model for classifying ads and trackers.
We extract different structural (degree and connectivity) and con-
tent (domain and keyword) features for nodes in the graph. Degree
features include attributes such as in-degree, out-degree, number
of descendants, and number of node additions/modifications. Con-
nectivity features include a variety of centrality metrics. Domain
features capture first versus third party domain/sub-domain infor-
mation. Keyword features capture the presence of certain ad-related
keywords in query string. Below, we explain each of these features
in detail.

3.4.1 Degree Features. Degree features provide information
about the number of edges incident on a node. Below we explain
specific degree metrics that we extract as features.
• In-Degree: The in-degree of a node is defined as the number
of inward edges incident on the node. We separately compute
in-degree for different edge types based on the type of node they
are originating from. We also use aggregate node in-degree.

• Out-Degree: The out-degree of a node is defined as the number
of outward edges incident on the node. We separately compute
out-degree for different edge types based on the type of their
destination node. We also use aggregate node out-degree.

• Descendants: The descendants of a node is defined as the num-
ber of nodes reachable from it.

• Addition of nodes: For a node, we count the number of nodes
added by it. This feature specifically captures the addition of
new DOM nodes by a script.

• Modification of node attributes: For a node, we count the
number of node attribute modifications made by it. This feature
specifically captures the attribute modifications of DOM nodes
by a script. We consider modifications to existing attributes,
addition of new attributes, and removal of existing attributes.

• Event listener attachment: For a node, we count the number
of event listeners attached by it. This feature specifically captures
the event listener attachments to DOM nodes by a script.

3.4.2 Connectivity Features. Connectivity features provide in-
formation about the relative importance of a node in the graph.
Below we explain specific connectivity metrics that we extract as
features.
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• Katz centrality: The Katz centrality of a node is a centrality-
based measure of relative importance. It is influenced by the
degree of a node and degree of its neighboring nodes and degree
of nodes reachable by its neighboring nodes.

• Closeness centrality: The closeness centrality of a node is de-
fined as the average length of shortest paths to all nodes reach-
able from it.

• Mean degree connectivity: The mean degree connectivity of
a node is defined as the average of degrees of all its neighboring
nodes.

• Eccentricity: The eccentricity of a node is defined as the max-
imum of distance from that node to all the other nodes in a
graph.

3.4.3 Domain Features. Domain features provide information
about the domain specific properties of a node’s associated URLs.
Below we explain specific domain properties that we extract as
features.

• Domain party: For a node, the domain party feature describes
whether the domain of the node URL is first-party or third-party.

• Sub-domain: For a node, the sub-domain feature describes
whether the domain of the node URL is a sub-domain of the
first-party domain.

• Base domain in query string: For a node, the base domain in
query string feature describes whether the node URL has base
domain as a parameter in query string.

• Same base domain and request domain: For a node, the same
base domain and request domain feature describes whether the
domain of node URL is same as the base domain.

• Node category: For a node, the node category feature describes
the HTTP node type of the node URL as described in Section 3.3.1.

3.4.4 Keyword Features. Keyword features provide information
about the use of certain keywords in URLs. Below we explain spe-
cific keyword patterns that we extract as features.

• Ad keywords: For a node, we capture the number of ad-related
keywords present in the node URL. We use keywords such as
‘advertise’, ‘banner’, and ‘advert’ because they tend to fre-
quently appear in advertising URLs. We also capture the number
of ad-related keywords that are followed by a special character
(e.g., ‘;’ and ‘=’) in the node URL. This helps us exclude sce-
narios where ad-related keywords are part of non ad-related text
in the URL.

• Query string parameters: For a node, we count the number of
semicolon separated query string parameters in the node URL.
We also capture whether query string parameters are followed
by a ‘?’ and they are separated by a ‘&’.

• Ad dimension information in query string: For a node, we
check whether the query string has ad dimensions. We define
a pattern of 2–4 numeric digits followed by the character x
and then again followed by 2–4 numeric digits as the pres-
ence of ad size in a query string parameter. We also capture
the presence of screen dimension in a query string parameter.
We look for keywords such as screenheight, screenwidth, and
screendensity.

NON-AD Nodes
AD Nodes

Figure 3: Zoomed-in version of the graph constructed for

www.bbc.com.

3.5 Feature Analysis

Next we analyze a few of the features that we use to train our ma-
chine learning classifier. Consider the graph shown in Figure 3 as a
reference example during our feature analysis. While nodes in Fig-
ure 3 follow the color scheme explained in Section 3.3.1, ad/tracker
nodes (AD) are represented by and non ad/tracker nodes (NON-
AD) are represented by . We explain the ground truth labeling of
AD and NON-AD nodes further in the next section.

Figure 4(a) plots the cumulative distribution function (CDF) of
closeness centrality. We note that AD nodes tend to have higher
closeness centrality values as compared toNON-AD nodes. It means
that AD nodes are more well connected than NON-AD nodes. In
Figure 3, AD nodes are generally connected to multiple HTML
element nodes and JavaScript snippet nodes as compared to NON-
AD nodes, which mostly appear as leaf nodes. These additional
connections enable extra paths for AD nodes, making them more
central than NON-AD nodes.

Figure 4(b) plots the CDF of eccentricity of a node. As shown in
Figure 3, AD nodes are mostly accompanied by JavaScript snippet
nodes that represent analytics scripts. Thus, AD nodes have more
paths to reach other nodes in the graph. Analytics scripts usually
appear at the start of DOM tree and AD nodes connected to them
will have shorter paths (low eccentricity) to other nodes compared
to NON-AD nodes that appear as leaf nodes.

Figure 4(c) plots the CDF of number of descendants of a node.
The number of descendants of a node provides a clear distinction
between AD and NON-AD nodes. As we note in Figure 3, most
NON-AD nodes appear as leaf nodes (image URLs, anchor URLs)
while most AD nodes appear as non-leaf nodes. This behavior is
captured by the number of descendants of a node.

Figure 4(d) plots the distribution of first-party versus third-party
URLs for AD and NON-AD nodes. As expected, it is evident that
most ads and trackers are loaded by third-party URLs.
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Figure 4: Conditional feature distributions.

3.6 Supervised Classification

We use random forest [34] which is a well-known ensemble super-
vised learning algorithm for classification. Random forest combines
decisions from multiple decision trees, each of which is constructed
using a different bootstrap sample of the data, by choosing the mode
of the predicted class distribution. Each node for a decision tree is
split using the best among the subset of features selected at random.
This feature selection mechanism is known to provide robustness
against over-fitting issues. We configure random forest as an en-
semble of 10 decision trees with each decision tree trained using
int(logM + 1) features, whereM is the total number of features.

4 EVALUATION

We first evaluate AdGraph by measuring how closely its classifi-
cation matches popular crowdsourced filter lists in blocking ads
and trackers. AdGraph replicates the behavior of crowdsourced
filter lists with 97.7% accuracy, 83.0% precision, and 81.9% recall.
We next manually analyze disagreements between classifications
by AdGraph and crowdsourced filter lists. We find that more than
65% of AdGraph’s false positives are in fact false negatives of
crowdsourced filter lists. We also evaluate the effectiveness of Ad-
Graph against adversarial obfuscation that attempts to bypass
crowdsourced filter lists. We show that AdGraph is fairly robust
against obfuscation attempts, the precision decreases by 7% while
the recall decreases by at most 19% for the most aggressive obfusca-
tion. Overall, our experimental evaluation shows that AdGraph’s
graph-based machine learning approach outperforms manually
curated, crowdsourced filter lists in terms of both accuracy and
robustness.

4.1 Experimental Setup

Ground Truth. We use an instrumented version of Chromium
web browser [43] with Selenium WebDriver to automatically crawl
the home pages of Alexa top-10K websites. We are able to con-
struct graphs incorporating information across HTML, HTTP and
JavaScript layers of the web stack for 7,699 websites.1 We need a
web-scale “ground truth” to evaluate the accuracy of AdGraph in
blocking ads and trackers. We use the union of 9 popular crowd-
sourced filter lists2 despite their well-known shortcomings for two
reasons. First, the popularity of these crowdsourced filter lists sug-
gests that they are reasonably accurate even though they are im-
perfect. Second, a better alternative—building a web-scale, expert-
labeled ground truth—would require funding and labor at a scale
not available to the research community. Thus, despite their short-
comings, we make the methodological choice to treat these crowd-
sourced filter lists as ground truth for labeling ads and trackers.
Using these crowdsourced filter lists, we label HTTP URL nodes as
AD or NON-AD. While we do not label non-HTTP nodes, we do
use HTML and JavaScript layers to enhance the constructed graph
by capturing fine-grained information flows across HTTP, HTML,
and JavaScript layers. Overall, our ground truth labeled data set
has 131,917 AD and 1,906,763 NON-AD nodes.
Cross-Validation. We train a machine learning model to detect
AD and NON-AD nodes. Specifically, we train a singe model using
the available labeled data that would generalize to any unseen
website. We train and test AdGraph using stratified 10-fold cross-
validation. We use 9 folds for trainingAdGraph’s machine learning
model and the leftover fold for testing it on unseen websites. We
repeat this process 10 times using different training and test folds.
Accuracy Results. We measure the accuracy of AdGraph in
terms of true positive (TP), false negative (FN), true negative (TN),
and false positive (FP).

• TP: An ad or tracker is correctly labeled AD.
• FN: An ad or tracker is incorrectly labeled NON-AD.
• TN: A non-ad or non-tracker is correctly labeled NON-AD.
• FP: A non-ad or non-tracker is incorrectly labeled AD.

Overall, AdGraph achieves 97.7% accuracy, with 83.0% precision
and 81.9% recall. Figure 5 shows the Receiver Operating Charac-
teristic (ROC) curve for AdGraph. The curve depicts the trade-off
between true positive rate and false positive rate as the discrimina-
tion threshold of our classifier is varied. Using this formulation, we
can also quantify the accuracy of AdGraph by using the area under
the ROC curve (AUC). High AUC values reflect high positive rate
and low false positive rate. AdGraph’s true positive rate quickly
converges to near 1.0 for fairly small false positive rates with AUC
= 0.98.

1Note that we are unable to crawl 1,275 websites due to server-side errors (e.g., HTTP
error codes 404 and 500) and 1,026 websites due to issues in the instrumented browser
which is meant to be a research prototype. Our eyeball analysis showed that there was
not something specific in the nature of functionality of these sites that would bias our
evaluation.
2We use EasyList [6], EasyPrivacy [10], Anti-Adblock Killer [2], Warning Removal
List [21], Blockzilla [4], Fanboy Annoyances List [11], Fanboy Social List [12], Peter
Lowe’s list [16], and Squid Blacklist [17].
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Figure 5: ROC curve of AdGraph for detecting ads and

trackers.

AblationResults. In order to maximize the accuracy of AdGraph,
we combine four categories of features (degree, connectivity, do-
main, and keyword) defined in Section 3.4. We now evaluate the
relative importance of different feature categories. To this end, we
compare the precision and recall of all possible combinations of
different feature categories. Specifically, we first use each feature
category individually, then in combinations of two and three, and
finally use all of them together. Figure 6 reports the precision and
recall of different feature category combinations. For individual
feature categories, none of them provide sufficient accuracy to be
used stand-alone with the exception of connectivity features. We
note that keyword features (also used in prior work [30]) have the
highest precision but lowest recall as compared to other feature
categories. As we start combining features, we find that precision
and recall improve by the addition of each feature category, and that
precision and recall are maximized by combining all four feature
categories.

4.2 False Positive Analysis

When AdGraph detects NON-AD nodes (labeled by crowdsourced
filter lists) as AD nodes, the disagreement is recorded as a false posi-
tive. Due to the previously discussed shortcomings of crowdsourced
filter lists as ground truth, we manually evaluate a sample of these
false positives. Our analysis reveals that in most cases AdGraph
makes the right evaluation, and that the filter lists are incorrect—we
refer to these cases as “false, false-positives.” Overall, we find that
65.4% of AdGraph’s false positives are in fact “false, false-positives.”
Therefore, AdGraph’s precision reported in Section 4.1 is a lower
bound on actual precision. Next, we discuss our methodology to
analyze AdGraph’s false positives with a few illustrative examples.

For 22,062 cases, AdGraph has a disagreement with the
ground truth label by crowdsourced filter lists. To analyze
these disagreements, we group 22,062 URLs into 3,950 clus-
ters according to their base domain because resources from the
same base domain are likely to provide similar functionality.
For example, evil.com/script1.js and evil.com/script2.js
are more likely to have a similar functionality as compared
to nice.com/script1.js. We then manually analyze 1,400 of

these 3,950 groups, which comprise of 11,714 unique URLs. Due to
a large number of these URLs, we only sample one URL out of each
cluster for manual analysis.

4.2.1 Methodology. We manually analyze the disagreements
between AdGraph and the filter lists as follows.

(1) If the URL contains keywords associated with advertising
(e.g. an ad exchange) or tracking (e.g. analytics), we consider
AdGraph’s labeling correct.

(2) If we find that the URL is present in less popular regional
filter lists [8] or it is mentioned on adblocking forums [1],
we consider AdGraph’s labeling correct.

(3) If we find ad and tracking related keyword in JavaScript
served by URLs, we consider AdGraph’s labeling correct.

(4) Otherwise, we consider AdGraph’s labeling incorrect.

4.2.2 Results. Table 1 shows the breakdown of our manual anal-
ysis. ‘N/A’ refers to URLs that are inaccessible due to server down-
time. ‘Unknown’ refers to URLs that are difficult to analyze due
to code obfuscation. ‘Functional‘ refers to URLs that are not as-
sociated with ads or trackers. Interestingly, 65.4% of the sampled
false positive cases are confirmed to be “false, false-positives.” Thus,
AdGraph is able to automatically leverage structural information
through machine learning to identify many ads and trackers that
are otherwise missed by crowdsourced filter lists.

4.2.3 Case Studies. Belowwe discuss a few interesting examples
of “false, false-positives.” We will discuss AdGraph’s actual false
positives later in Section 4.3.
yimg.com. We first discuss a case of conversion tracking script in
Code 2 from yimg.com that is detected by AdGraph but missed by
crowdsourced filter lists. Besides code analysis, yimg also confirms
this tracking module in its official documentation [22]. We find 42
different websites in our sample that load this script. Given the
popularity of this unobfuscated tracking script, it is surprising that
none of the filter lists block it. This case study further highlights
the benefit of AdGraph’s automated detection of ads and trackers.
digitru.st. Next, we discuss a script in Code 3 that claims to provide
“anonymous” tracking service to publishers [5]. Beyond tracking,
we also identify anti-adblocking functionality in the script. We find
10 different websites in our sample that load this script. However,
it is not blocked by any of the filter lists.
glbimg.com. Next, we discuss a tracking script in Code 4 from
glbimg.com. The script sends the recorded page views to the server.
We find 5 different websites in our sample that load this script.
intellicast.com. Next, we discuss an ad loading script in Code 5
from intellicast.com. The script serves as an “entry point” to load
ads on a web page. We visually compare the web pages with and
without the script, and confirm that we are able to block ads that are
loaded by the script. The visual comparison can be seen in Figure 7.

Functional Advertising/Tracking N/A Unknown

427 (30.5%) 915 (65.4%) 23 (1.6%) 35 (2.5%)
Table 1: Breakdown of false positive analysis
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Figure 6: Precision and recall using different feature categories.

1 function e(e, a) {
2 if (e.google_conversion_language =

window.yahoo_conversion_language ,
e.google_conversion_color =
window.yahoo_conversion_color ,
e.google_conversion_label =
window.yahoo_conversion_label ,
e.google_conversion_value =
window.yahoo_conversion_value ,
e.google_conversion_domain = a,
e.google_remarketing_only = !1, "function" ==
typeof window.google_trackConversion)

3 window.google_trackConversion(e);
4 else {
5 var i = o(a, "conversion_async.js");
6 n(i, function () {
7 "function" == typeof

window.google_trackConversion &&
window.google_trackConversion(e)

8 })
9 }
10 }

Code 2: yimg.com ads conversion tracker loader script.

1 ad blocker: {
2 detection: !1,
3 blockContent: !1,
4 userMessage: "Did you know advertising pays for

this brilliant content? Please disable your
ad blocker , then press the Reload button
below ... and thank you for your visit!",

5 popupFontColor: "#5F615D",
6 popupBackgroundColor: "#FFFFFF",
7 logoSrc: null ,
8 logoText: null ,
9 pictureSrc: null
10 },

Code 3: digitru.st tracking script.

4.3 Breakage Analysis

We now analyze the impact of AdGraph’s actual false positives
on site breakage. To this end, we manually open websites and ob-
serve any breakage caused by the blocking of AdGraph’s actual

1 function b(k) {
2 k = a.call(this , k) || this;
3 void 0 === b.instance && (b.instance = k,

f.noAutoStartTracker ||
k.client.sendPageView(k.makeParams ()));

4 return b.instance
5 }

Code 4: glbimg.com tracking script.

1 createClass(MoneyTreeBase , [{
2 key: 'getSlots ',
3 value: function getSlots () {
4 return new Promise$1(function (resolve) {
5 return gptCmd(function () {
6 return resolve(window.googletag.pubads

().getSlots () || []);
7 });
8 });
9 }
10 }

Code 5: intellicast.com ads loader script.

(a) Before blocking (b) After blocking

Figure 7: Effect of blocking “false, false-positive” on

intellicast.com.

false positives. Specifically, we identify the breakage by analyzing
whether the false positives remove resources that are critical for
the site’s functionality. We manually analyze 528 websites from
427 clusters, which are classified as ‘Functional’ false positives in
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Table 1. Note that we could not analyze 183 websites for breakage
because of the use of dynamic URLs. Interestingly, we find that Ad-
Graph’s actual false positives do not result in any visible breakage
for more than 74% of the websites. Therefore, we conclude that a
majority of AdGraph’s actual false positives in fact do not harm
user experience. Next, we discuss our methodology to analyze the
breakage caused by AdGraph’s actual false positives.

4.3.1 Methodology. We manually analyze the site breakage as
follows.

(1) We first generate a custom filter list to block AdGraph’s
actual false positives.

(2) We then open the same website on two browser instances,
one with adblocker and the other without adblocker.

(3) We compare the two loaded web pages, perform 3–5 clicks
in different regions and scroll up/down 3 times to trigger
any potential breakage.

We infer breakage by looking for visual inconsistencies across
the two browser instances. We specify three levels for site breakage:
none, minor, and major. These three levels respectively correspond
to no visible inconsistencies, minor visible inconsistencies (e.g. few
images disappear), and page malfunction (e.g. garbled layout).

4.3.2 Results. Table 2 shows the breakdown of our manual anal-
ysis of site breakage. Interestingly, we do not observe any breakage
for 74.7% of the websites. We do observe minor breakage on 19.1%
of the websites and major breakage on 6.1% of the websites. We
argue this is a reasonably small number, showing limited impact of
AdGraph’s actual false positives on user experience. In future, we
plan to further reduce such breakage by incorporating additional
features.

Not visible Visible: minor Visible: major

247 (74.7%) 66 (19.1%) 21 (6.1%)
Table 2: Breakdown of breakage analysis results.

4.3.3 Case Studies. Belowwe discuss a few interesting examples
of AdGraph’s actual false positives. We discuss cases for different
breakage levels and provide some insights into their causes and
impact on user experience.
urbandictionary.com. We first discuss AdGraph’s actual false
positive on urbandictionary.com that does not cause any breakage.
urbandictionary.com loads a JavaScript library named twemoji to
support emojis [19]. Interestingly, removing this library does not
cause any visible breakage on the website.
darty.com. AdGraph blocks a functional script on darty.comwith-
out causing any visible breakage. Our manual analysis shows that
it is a helper module to manage browser cookies for shopping cart
functionality. We do not find any functional breakage in multiple
test runs.
fool.com. AdGraph blocks a script called FontAwesome on
fool.comwhile causingminor breakage. Our manual analysis shows
that it helps with display of vector icons and social logos [13]. As

shown in Figure 8, blocking the script only changes icons used on
the web page while not affecting any major functionality.

(a) Before blocking (b) After blocking

Figure 8: Minor breakage on fool.com.

meteored.mx. AdGraph blocks an iframe served by
meteored.mx on noticiaaldia.com causing minor breakage.
We note that it is a weather widget as shown in Figure 9. Blocking
the iframe only causes the weather widget to disappear.

Figure 9: Weather widget iframe from meteored.mx.

game8.jp. AdGraph blocks a script called Bootstrap on
game8.jp causing major breakage. As shown in Figure 10, blocking
Bootstrap garbles the web page and major portion of the web page
goes missing. Fortunately, such a major breakage happens for only
6.1% of AdGraph’s actual false positives.

(a) Before blocking (b) After blocking

Figure 10: Major breakage on game8.jp.

4.4 Robustness to Obfuscation

Next, we analyze the robustness of AdGraph against adversar-
ial obfuscation by publishers and advertisers to get their ads past
adblockers. We focus our attention on practical obfuscation tech-
niques that have been recently developed and deployed to bypass
filter lists used by adblockers. Wang et al. [51] recently proposed to
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randomize HTTP URLs and HTML element information to this end.
Similar obfuscation techniques are being used by ad “unblocking”
services [14, 32, 58] to bypass filter lists used by adblockers. We
implement these obfuscation attacks on Alexa top-10K websites
and evaluate the robustness of AdGraph against them.

4.4.1 HTML Element Obfuscation Attacks. First, we implement
an adversarial publisher who can manipulate attributes of HTML
elements. HTML element hiding rules in filter lists typically use
element id and class attributes. Thus, an adversarial publisher
can simply randomize id and class attributes at the server side to
bypass these HTML element hiding rules. It is noteworthy, however,
that modifications of id and class attributes need to be constrained
so as to not impact the appearance and functionality of the website.
For example, a script that interacts with an HTML element based on
its attribute will not be able to interact if HTML element attributes
are randomized. To address this issue with obfuscation, Wang et
al. [51] demonstrated a workable solution that requires overriding
the relevant JavaScript APIs and keeping a map of original attribute
values. To evaluate the robustness of AdGraph against such an
adversary who can manipulate attributes of HTML elements, we
randomize HTML element id and class attributes of all HTML
elements in our constructed graph. As shown in Figure 11, we find
that AdGraph’s precision and recall is not impacted at all by ran-
domization of HTML element id and class attributes. AdGraph
is robust to HTML element obfuscation attacks because it mainly
relies on structural properties of the constructed graph and not on
HTML element attributes.

4.4.2 HTTP URL Obfuscation Attacks. Second, we implement an
adversarial publisher who can manipulate HTTP URLs. HTTP URL
blocking rules in filter lists typically use domain and query string
information. Thus, an adversarial publisher can simply randomize
domain and query string information to bypass these HTTP URL
blocking rules. While modifications to query string can generally
be easily done without impacting the site’s appearance and func-
tionality, modifications to domain names of URLs are constrained.
For example, a third-party advertiser cannot arbitrarily modify
its domain to that of the first-party publisher or other publishers.
As another example, due to the non-trivial overheads of domain
registration and maintenance, a third-party advertiser can only
dynamically select its domain from a pool of a few domains. To
evaluate the robustness of AdGraph against such an adversary,
as discussed next, we manipulate information in HTTP URLs in
three ways: (1) modify query string, (2) modify domain name, and
(3) modify both query string and domain name.
Query string randomization. We modify query string of a URL
by randomly changing its parameter names, parameter values, and
the number of parameters. For each URL in our constructed graph,
we conduct a randomly selected combination of these modifications.
Recall from Section 3.4 that we do use query string information
to extract features. For example, we look for specific ad-related
keywords. An adversary who randomizes query strings would be
able to successfully manipulate ad-related keywords. Figure 11
shows that an adversary employing query string randomization
has a small impact on precision and recall. Specifically, precision
and recall of AdGraph decrease by 0.01 and 0.02, respectively.
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Figure 11: Change in precision and recall of AdGraph

against different obfuscation attacks.

Domain name randomization. We modify domain name of a
URL by adding a random sub-domain (if not already there), ran-
domly changing an existing sub-domain, and randomly changing
the base domain. For each URL in our constructed graph, we con-
duct a randomly selected combination of these modifications. Note
that we only add or modify sub-domains for first-party URLs be-
cause changing its base domain would make them third-party URLs.
Similarly, we do not change the base domain of a third-party URL
to that of the first-party. Recall from Section 3.4 that we do use
domain information to extract features. For example, we use sub-
domain information of HTTP URLs. An adversary who randomizes
domain information would be able to successfully manipulate these
domain features. Figure 11 shows that an adversary employing
domain name randomization has a modest impact on precision
and recall. Specifically, precision and recall of AdGraph decrease
by 0.06 and 0.17, respectively.
Randomization of both query string and domain name. We
also jointly modify both query string and domain name for each
URL. Figure 11 shows that joint randomization of query string
and domain name has the most impact on precision and recall of
AdGraph. Specifically, precision and recall of AdGraph decrease
by 0.07 and 0.19, respectively.

Overall, we conclude that AdGraph is fairly robust against ad-
versaries who have the capability of manipulating HTML andHTTP
information on web pages. AdGraph achieves robustness because
it does not rely on any singular source of information (e.g., patterns
in query string or blacklist of domains). The graph representation
of interactions across HTTP, HTML, and JavaScript layers of the
web stack means that an adversary would have to manipulate in-
formation in all three layers together to bypass AdGraph.

5 RELATEDWORK

In this section, we review prior work that use machine learning to
replace or complement crowdsourced filter lists for blocking ads,
trackers, and anti-adblockers.
HTTP-based approaches. Researchers have previously at-
tempted to identify patterns in HTTP requests using supervised
machine learning approaches to aid with filter list maintenance.
Bhagavatula et al. [30] used keywords and query string information
in HTTP requests to train supervised machine learning models for
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classifying ads. Gugelmann et al. [38] used HTTP request header
attributes such as number of HTTP requests and size of payload
to identify tracking domains. Yu et al. [57] also analyzed HTTP
requests to detect privacy leaks by trackers in URL query string
parameters. While these approaches are somewhat automated, they
are not robust to evasion, due to their reliance on simple HTTP-
based features that can be easily evaded by adversaries (publishers
or advertisers) who can manipulate domain or query string infor-
mation.
HTML-based approaches. Researchers have also attempted to
identify HTML DOM patterns using computer vision and machine
learning techniques to detect ads and anti-adblockers. For example,
Storey et al. [49] proposed a perceptual adblocking approach to
detect ads based on their visual properties. Their key insight is that
ads need to be distinguishable from organic content as per govern-
ment regulations [18] and industry self-regulations [23]. Mughees
et al. [45] analyzed patterns in DOM changes to train a machine
learning model for detecting anti-adblockers. These approaches are
also not robust to evasion due to their reliance on simple HTML-
based features. Adversarial publishers and advertisers can easily
manipulate HTML element attributes to defeat these approaches.
JavaScript-based approaches. Since publishers and advertisers
extensively rely on JavaScript to implement advertising and track-
ing functionalities, researchers have also tried to use JavaScript code
analysis for detecting ads and trackers. To this end, one thread of
research leverages static analysis of JavaScript code using machine
learning techniques. Ikram et al. [39] conducted n-gram analysis
of JavaScript dependency graphs using one-class support vector
machine for detecting trackers. Iqbal et al. [40] constructed abstract
syntax trees of JavaScript code which were then mapped to features
for training machine learning models to detect anti-ad blockers.
While these static analysis approaches achieve good accuracy, they
are not robust against even simple JavaScript code obfuscation tech-
niques [50, 55, 56]. Researchers have resorted to dynamic analysis
techniques to overcome some of these challenges. Wu et al. [53]
extracted JavaScript API invocations through dynamic analysis
and trained a machine learning model to detect trackers. Storey et
al. [49] proposed to intercept and modify API calls by JavaScript
to bypass anti-adblockers. Zhu et al. [60] conducted differential
JavaScript execution analysis to identify branch statements such as
if/else that are triggered by anti-adblocking scripts. While dynamic
analysis is more resilient to obfuscation than static analysis, it is
possible for websites to conceal and obfuscate JavaScript APIs to
reduce the effectiveness of dynamic analysis.
Multi-layer approaches. To improve the accuracy and robust-
ness of ad blocking, researchers have looked at integrating multiple
information types (e.g., HTML, HTTP, JavaScript). Bau et al. [29]
proposed to leverage both HTML and HTTP information with ma-
chine learning to automatically capture relationships among web
content to robustly detect evasive trackers. More specifically, the
authors constructed the DOM tree, labeled each node with its do-
main, and then extracted a wide range of graph properties (e.g.,
depth, degree) for each domain. Kaizer and Gupta [41] utilized both
JavaScript and HTTP information to train amachine learningmodel
for detecting trackers. More specifically, the authors used JavaScript
navigation and screen properties such as appName and plugins and

HTTP attributes, such as cookies and URL length to detect tracking
URLs. Our proposed approach AdGraph significantly advances
this line of research. To the best of our knowledge, AdGraph rep-
resents the first attempt to comprehensively capture interactions
between HTML, HTTP, and JavaScript on a web page to detect
ads and trackers. As our evaluations have shown, leveraging all
of the available information at multiple layers helps AdGraph in
accurately and robustly detecting ads and trackers.

6 CONCLUSION

We presented a graph-based machine learning approach, called
AdGraph, to automatically and effectively block ads and trackers
on the web. The key insight behind AdGraph is to leverage in-
formation obtained from multiple layers of the web stack: HTML,
HTTP, and JavaScript. With these three ingredients brought to-
gether, we showed that we can train supervised machine learning
models to automatically block ads and trackers. We found that Ad-
Graph replicates the behavior of popular crowdsourced filter lists
with an 97.7% accuracy. In addition, AdGraph is able to detect a
significant number of ads and tracker which are missed by popular
crowdsourced filter lists.

In summary, AdGraph represents a significant advancement
over unreliable crowdsourced filter lists that are used by state-of-
the-art adblocking browsers and extensions. More importantly, as
adblockers pose a growing threat to the ad-driven “free”web, we
expect more and more financially motivated publishers and ad-
vertisers to employ adversarial obfuscation techniques to evade
adblockers. Unfortunately, crowdsourced filter lists used by state-
of-the-art adblockers can be easily evaded using simple obfuscation
techniques. Therefore,AdGraph’s resistance to adversarial obfusca-
tion attempts by publishers and advertisers represents an important
technical advancement in the rapidly escalating adblocking arms
race.
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